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Introduction

N an imperfectly expanded supersonic jet, shock-cell structures

are formed downstream of the nozzle exit. The unstable motion
of the shock-cellcaused by the shearlayer generatesacoustic waves,
that is, jet noise. Sometimes, the acoustic waves interact with the
shock. To simulate the jet noise correctly, the scheme for the com-
putation of the shock-sound interaction should be validated accu-
rately. However, an analysis of the shock-soundinteractionproblem
for which an analytic solution exists has not been attempted until
recently.!

Therefore, the subject of this Note is to validate the accuracy of
the present finite volume essentially nonoscillatory (ENO) shock-
capturing scheme through the computation of the shock-sound in-
teraction problem. The major technical difficulty in this problem is
to capture accurately the discontinuityin the steady-mean flow such
as a shock and a perturbed wave from the shock-sound interaction.

A class of uniformly high-order-accurate, finite volume ENO
scheme has been developed by Harten et al.> An attempt to apply
the ENO scheme to aeroacoustic problems was made by Meadows
et al.,’> who discussed spurious entropy waves in calculations of an
unsteady shock in the flowfield. This conventional ENO scheme has
two problems. One of the problemsis that the computationaltime for
the simulation of complex geometries is quite long and the other is
the convergenceproblem that affects long-time steady calculations.
For reducing the computational time, the modified flux approach
(MFA) scheme that is introduced by Yang and Hsu* is adopted for
the present study. The authors have experience with a complicated
system like a reciprocating engine intake problem with a moving
piston and a valve that was successfully simulated using the present
MFA-type finite volume ENO scheme’

The conventional ENO scheme for high-order accuracy and
nonoscillatory shock capturingis achieved through the use of adap-
tive stenciling. One of the methods of improving the convergenceof
the ENO scheme is to employ the biased-stencilalgorithm. Atkins®
has proposed a linear biased-stencil algorithm in order to obtain
a linear perturbed solution without a mean flow, a steady solution
without a shock, and a perturbed solution from initially steady flow
in a converging-divergingnozzle. Casper and Meadows’ have also
suggested a nonlinear biased algorithm that retains the nonbiased
stencils in smooth regions, yet allows more freedom near a discon-
tinuity. In this case only a steady flow with a shock in a nozzle was
calculated,althougha perturbedsolutionas a result of a shock-sound
interaction was not obtained.

The purpose of the present Note is to obtain a suitably converged
steady solution with a shock in a nozzle and a perturbed solution
from a shock initially existing in the mean flow, using both a linear
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and a nonlinear biased-stencilalgorithm. It is shown that the present
calculationresults are in excellentagreement with analytic ones.

Numerical Method

The finite volume ENO scheme used for the present work is
briefly described as follows. The conservative forms of quasi-one-
dimensional Euler equations in generalized coordinates are repre-

sented as
%(g) +3%<AE)=§ )
where
P pu 0
Q= pul, E=| pu>+p |, H= pi—? 2
pe; (pe, + pu L 0 J

The variables p, u, p, e,, and A are the density, velocity, pres-
sure, total energy, and nozzle area, respectively; and p is related
to other variablesby p = (y — 1)[pe, — pu®/2], where y is the ra-
tio of specific heats. The Jacobian of transformation J is &, in the
one-dimensionalproblem. The spatial derivativeterm d(AE) /9§ in
Eq. (1) can be expressed as based on Roe’s approximate method:

I(AE)
0

=[(AB), 1~ (AE), 4] (3)

where E j+1/2 is the numerical flux defined by

E;j g =4( 1+E1+1+R1+%'q’j+%/11+%) 4)

and j + % denotes the cell interface value and is obtained by Roe’s
average. The R is the right eigenvector matrix, and the components
of the column vector @, ;» in Eq. (4) are shown in Ref. 5.

The adaptive stenciling that adapts its interpolation set to the
smoothestavailable part of the solution makes ENO schemes highly
nonlinear.However, these schemesalsohave certaindrawbacks. The
free adaptation of stencils is not necessary in regions where the
solution is smooth. These drawbacks can be remedied through
the use of a biased-stencil algorithm. In this Note Atkins’s linear
biased-stencil algorithm and Casper’s nonlinear one were tested
for the shock-soundinteraction problem, and these algorithms have
been slightly modified for applying to the present finite volume
ENO scheme. Both of them show satisfactory results of the steady
solution with a shock and a perturbed solution from initially steady
flow compared with the analyticones. However, the linear algorithm
has better convergent history than the nonlinear case, as shown in
Fig. 1.
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Fig.1 Residual of the steady-state solution.
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Numerical Results and Discussion
For quasi-one-dimensioml transonic nozzle computations, prob-
lem 2 category 1 in the Third CAA Workshop on Benchmark
Problems!' is solved. This problem is to simulate the shock-sound
interactionsin a transonicnozzle. The domainis —10 < x < 10, and
the area of the nozzle is given by

2
0.536572 — 0.198086exp —(&2)(&) ., x>0

Alx) =
2
X
1.0 — 0.661514exp —(&2)(R> , x <0
)
At the inlet boundary the conditions are
0 1 1
ul|=|M |+ |1|e- sin|w Al (6)
1+M
p 1/y 1

wheres =1.0 x 107>, @ = 0.6 77, and Mo, = 0.2006533. The pres-
sure will be set at the outflow boundary to create a shock, (p)exic =
0.6071752.

A steady-statesolutionas shown in Fig. 2 is obtained with a third-
order ENO scheme with biased-stencilalgorithm. This numerically
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Fig. 2 Initial steady-state solution.
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Fig.3 Spatial perturbed pressure distribution.

converged initial condition could not be obtained with a conven-
tional ENO scheme. A suitably converged solution demonstrates
that the linear and the nonlinear biased-stencil algorithms are well
applied to the present finite volume ENO scheme.

After the steady state is achieved, an acoustic disturbance is in-
troduced at the inlet, x = —10. The calculation is performed on
a 301 cell clustered near the nozzle throat. The time step used
is determined by the Courant-Friedrichs-Lewy condition with a
Courant number of 0.9. The inflow is perturbed for 0 <¢/7; <50,
where T, =27 /wis one period of the incoming acoustic wave. Non-
reflecting transparent characteristic boundary condition is used as
the numericalboundaryconditionsat the inflow and outflow for both
the steady-statesolutionand the time-dependentsolution ® This con-
dition enables the source to be transparentand maintains the nonre-
flection at the inlet boundary. Figure 3 shows the spatial perturbed
pressure distribution at the start of a period [x, p(x) — p(x)] over
the period of the perturbation. The acoustic wave propagatesto the
shockwave, and a reflected wave and a transmitted wave are formed.
Itis observed that a large amplitude is generated at the shock posi-
tion interacting between acoustic wave and shock wave. The results
in Figs. 2 and 3 are in good agreement with the analytical solutions
that were provided by the committee of Third CAA Workshop on
Benchmark Problems.!

Conclusions

The modified-flux-approach-type finite volume ENO scheme
with the linear and the nonlinear biased-stencil algorithms is suc-
cessfully applied to the shock-soundinteractionproblem, which had
not been solved previously using the ENO scheme. On the basis of
the simulations, we obtained a suitably converged solution with a
shock. Other researchers have already computed it. However, we
computed accurately a perturbed solution from a shock initially ex-
isting in the mean flow using the upwind ENO scheme for the first
time. The solutions are in excellent agreement with analytical ones,
and it is shown that the linear algorithm has a better convergence
history than the nonlinear case.

We have found that the nonreflecting transparent characteristic
boundary condition is necessary when inflow perturbations are im-
posed on the inflow boundary. Finally, it is concluded that the pro-
posed finite volume ENO scheme with the biased-stencilalgorithm
could assist in investigating practical aeroacoustic problems that
involve shocks.
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